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Abstract

The study reported in this paper concerns the determination of couple-stress moduli and characteristic lengths of
heterogeneous materials. The study is set in the context of a planar (two-dimensional), two-phase composite with linear
non-couple-stress (classical), elastic constituents, with a single microstructural length scale (inclusion spacing) in an
equilateral triangular array. We use an approach which allows a replacement of this composite by an approximating
couple-stress continuum. We determine the effective material parameters from the response of a unit cell under either
displacement, displacement-periodic, or traction boundary conditions. We carry out computations of all the moduli by
varying the stiffness ratio of both phases, so as to cover a range of very different materials from porous solids through
composites with rigid inclusions. It is found that the three boundary conditions result in hierarchies of couple—stress
moduli. In addition, we observe from our numerical computations that these three boundary conditions also result in a
hierarchy of characteristic lengths. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Classical continuum theories show discrepancies with experiments when a material microstructure gives
rise to sharp gradients of dependent fields. Cosserat-type (or microcontinuum-type) theories, dating back to
the Cosserat brothers (Cosserat, 1909), attempt to account for these phenomena. Although a number of
theoretical results have been obtained, the full utility of Cosserat-type theories hinges on one’s ability to
determine the constitutive coefficients. Indeed, some progress in that direction has been made over the past
three decades, but the situation is still one of theoreticians being well ahead of the experimentally available
results (e.g., Nowacki, 1986a,b). The work we report here aims at remedying the situation through mi-
cromechanical analysis rather than the experiment.
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It appears that, in general, the issue of determination of micropolar coefficients has been addressed in
four types of problems: (a) crystal lattice systems (Askar, 1986); (b) regular beam networks (Wozniak, 1970;
Bazant and Christensen, 1972); (c) laminated composites (Herrmann and Achenbach, 1968); and (d) gran-
ular media and foams (Perkins and Thomson, 1973; Lakes, 1983, 1986, 1995, and Yang and Lakes, 1982).
All these systems have one feature in common: they exhibit some definite microstructure, which, as is well
known, forms the motivation of all the investigations of Cosserat-type models and theories.

Thus, works in the first and second categories start out with a very clearly set periodic system of particles
interacting via forces and moments modeled by either interatomic potentials or beams. Laminated com-
posites offer quite a similar advantage thanks to their clearly defined geometry. The situation with foams
and granular media is more difficult due to a spatially disordered geometry of those materials, and
therefore, they have principally been studied through experiments.

In a recent study, Forest and Sab (1998) proposed a methodology for the derivation of an effective,
homogeneous Cosserat-type continuum for a heterogeneous Cauchy-type continuum. Their approach is an
extension of the classical homogenization method (Sanchez-Palencia and Zaoui, 1987) — it hinges on a
representation of the macroscopic displacement field by a polynomial main field and a periodic pertur-
bation. More specifically, they show three levels of the polynomial expansion: (i) the linear one leads to a
classical Cauchy-type continuum, (ii) the quadratic one leads to a couple-stress continuum, also called
a restricted model by Nowacki (1986a,b), and (iii) the third-order one (respectively, fourth order in three
dimensions) leads to an unrestricted Cosserat-type (micropolar) continuum. Using a finite element method,
Forest and Sab also demonstrate the definite advantage of replacing the actual Cauchy-type microstructure
by the Cosserat-type continuum: a much smaller number of degrees of freedom is required in the ho-
mogenized model.

Model of type (ii) has recently been pursued by Ostoja-Starzewski et al. (1999). We carried out that study
in the context of a planar, periodic, effectively isotropic, two-phase composite with linear elastic constit-
uents of classical Cauchy type, with a microstructural length scale given by the inclusion spacing. We
subjected the unit cell to periodic boundary conditions. In the limit of very low stiffness of the inclusion
phase we have obtained moduli that showed very good agreement with analytical derivations of beam-
framework models (Wozniak, 1970). Of additional interest to us was the determination of the somewhat
enigmatic characteristic length / — a parameter apparently first introduced in the analytical studies in the
sixties, when it showed up in the elastostatic field equations. While in the past, / was postulated to be equal
to the average cell or grain size, with all the moduli in hand we could now easily compute /, and, in fact,
found it to be a fraction of the microstructural cell size — from about one tenth to fourth of it — for
composites of the type described at the beginning of this paragraph at volume fractions from 3.6-58%.

In this paper, we continue this initial study by considering couple-stress moduli and characteristic
lengths of the above described composite under several additional types of boundary conditions: dis-
placement, displacement-periodic, and traction boundary conditions. We then find that these boundary
conditions result in hierarchies of couple—stress moduli. The motivation of this paper lies in the fact that we
cannot apply periodic boundary conditions in one of the tests (the bending test). Thus, we use an alternate
approach involving displacement and traction boundary conditions to obtain bounds on couple-stress
moduli and compare those with periodic and displacement-periodic boundary condition results. This in-
vestigation complements our other studies of boundary condition effects on elastic moduli of composites,
e.g. Jiang et al. (2000).

2. Problem formulation

The leitmotif of this paper is to replace a complex microstructure by a higher-order (i.e., Cosserat)
continuum. Once done, this allows one to work with a homogeneous material model, endowed with yet an



F. Bouyge et al. | International Journal of Solids and Structures 38 (2001) 1721-1735 1723

(a)

L /O

(b) (c)

Fig. 1. (a) A periodic, globally isotropic, matrix-inclusion composite, of period L, with inclusions of diameter d; (b) a periodic unit cell
with inclusions at the corner; and (c) a periodic unit cell with an inclusion at the center.

extra degree of freedom — that of rotation. In this paper, we address the issue of effective couple—stress
moduli in the context of linear elastic microstructures with a single microstructural length scale such as the
mean inclusion spacing. In particular, we remove the aspect of geometric disorder by focusing on a periodic
composite material with an equilateral, triangular arrangement of circular inclusions. This geometry gives
us a composite material which is effectively isotropic. We take the periodic unit cell as a rhombus-shaped
domain of edge length L and volume V = bL*\/3 /2 (Fig. 1). The rhombus’ height in the x, direction is
H = 2h = L/3/2, and its thickness in the x; is b.

The inclusion (i) and matrix (m) phases follow classical (linear elastic, isotropic) elasticity; they have
Young’s moduli £' and E™, and Poisson’s ratios v\ and v, respectively. By varying the stiffness ratio E'/E™
we can model a wide range of materials with either stiff or soft inclusions, and in the extreme cases of this
ratio tending to either co or 0, we approach composites with rigid inclusions or pores. It is important to
note, however, that the special case of no mismatch (E'/E™ = 1) implies no microstructure, so the couple
stress model becomes unnecessary in that case.

We focus here on the first planar problem of Cosserat elasticity (Nowacki, 1986a,b) with displacement
u = (u1,u,0) and rotation ¢ = (0,0, ¢,); this is a generalization of the classical in-plane elasticity, and
consider a couple-stress (or, restricted continuum) model, in which rotation depends on displacement
gradients in the same manner as in classical elasticity. The kinematics of the body is described by u;, u,, and
@3 = (uz1 — wu12)/2 , which define the strain tensor y;; and the (bending) curvature tensor 3,7, j = 1,2. The
force field is specified by force-stress tensor t;; and couple-stress tensor 3,1, = 1,2.

The composite of Fig. 1 is centrosymmetric: there is no coupling between t;; and x;3 on the one hand and
between y;; and w; on the other. Thus, the constitutive law will involve two stiffness tensors cl) i and C 3k3
only, which are defined via

1 2 ..
Tij = C;,'k)/"/kly Mz = C§3123Kk3a i,j,k,1=1,2. (1)

Equivalently, we can work with their inverses: compliances S} i and Sﬂk3 In the isotropic case, the latter is
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S,% = 1S(Sudy + 3ud) + (A — S)dydul, Sty = duM, (2)

1

where A, M and S are three independent planar couple-stress constants defined in Ostoja-Starzewski and
Jasiuk (1995).

Note that 4 and S are the area bulk compliance and shear compliance, respectively, and they are the
same as in classical plane elasticity. M is the additional independent constant, which has a dimension
differing from A4 and S by length squared. This gives rise to a length scale present in the couple—stress theory
(a special case of the Cosserat theory), which is absent in the classical elasticity theory. This length is
quantitatively grasped by a characteristic length / defined as

(3)

In this paper, we obtain the effective response of composites by employing the couple-stress theory,
which therefore gives the second constitutive tensor C,.(fk)3 (in addition to C,.(jlk), present in classical theory),
which captures the information on the microstructure. This information is not captured by classical mi-
cromechanics approaches for predictions of effective elastic moduli of heterogeneous materials.

Note that the unit cell’s response under non-periodic boundary conditions is anisotropic, but the de-
parture from isotropy is on the order of only a few percent for the composite systems with inclusion volume
fractlon of 18% studied in this paper. This makes an approximate comparison of stiffness tensors (both Cuk/
and Cm) found from non-periodic boundary conditions (this paper) with those from periodic ones (pre-
vious paper) possible. Additionally, this allows a discussion of all the results in the context of an isotropic
material model.

3. Boundary conditions on the unit cell

The main goal of our analysis is the determination of effective constitutive coefficients from the unit cell
response of a two-phase composite described in Section 2. We consider three types of boundary conditions
for determination of the effective couple—stress moduli for a material domain B having boundary 0B (Fig.1):
(1) displacement, (ii) displacement-periodic, and (iii) traction controlled. In each case we compute, by a
finite element method, the total elastic strain energy stored in the unit cell of the two-phase composite
Uell(= U as a functional of Cauchy strains ¢; (respectively, Cauchy stresses a;;). Separately, for the first
two boundary conditions, we set up the energy Ut corresponding to an effective, homogeneous
couple-stress continuum, which is a functional of the strains y,; and the curvatures r;;. By setting

Ucouple—stress — Ucell ( 48.)

we infer the effective stiffness tensors C i and c&,g On the other hand, in the case of traction boundary
conditions, we work with the complementary energy Ureowplestess _ g functional of t;; and p,; — and, from

U*couple—stress — l]*cell7 (4b)

we obtain the effective compliance tensors S') 2 and Sl3k3
3.1. Displacement boundary conditions

The total elastic strain energy stored in the unit cell is

1
Ul = 3 / &i;Ciiper dV, (5)
v
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while that of an approximating couple-stress continuum involves, in general, two terms

V
geouplemstress — B VijCi(jllglykl + Ki3 C§32123Kk3 ) (6)

where y;; in Eq. (6) stands for the effective strain of the unit cell in the couple-stress continuum and ;3 is the
effective curvature; 7 is the volume of the unit cell B defined in Section 2.
To determine Cfl.lk), we conduct two tests:

(1) Uniaxial extension
If we apply y,,, the displacement boundary conditions become

up(x) =0, ur(x) = ppxs Vx € 0B, (7)

which yields Célm = 2UCell /V when we set y,, = 1; alternately, we could apply u;(x) = y,,x; and u(x) =0,
which would yield C1111 For our composite, C};|, is approximately (within 5%) equal to sz for all the
stiffness mismatches considered.

(1) Simple shear

ui(x) = ypx2, w(x)=0, Vx¢€ 0B, (8)

which yields Cf;)u =2U"/V when we set y;, = 1. There are two more possibilities here: either apply
ur(x) = 0 and up(x) = yyox1, or uy(x) = y1,x2/2 and wup(x) = y5x1/2.

Finally, to determine Cl;;, we conduct

(i) Bending test

xi

EKB Vx € 0B. (9)
We note that, for a bending test, 7;; in Eq. (6) may be zero or non-zero, depending on the coordinate system
chosen. For the above bending test, the only possible non-zero strain component is y;; = [, u;; dV/V =
Jopuin1 dS/V. When we take the origin of coordinates at the rhombus corner, Eq. (9) ylelds the average
strain in the couple—stress medium y,, = —hx;3, Wthh results in C\3), = 20! /y — h2C\}) |, whereby (recall
Eq. (4a)) Ucell = yeowlestress — p[y €L o 4 13C13) 5 ie13] /2. When the origin of the coordinate system is at
the cell’s center, then y,; = 0, and thus the term involving Cgm in the latter expression vanishes. Also, here,
there exists another possibility for carrying the bending test: u; (x) = x3k23/2 and uz( ) = —x1x2K23. This test
would yield sz, which, for our study, is only approximately equal to C%)B, given the anisotropy issue
mentioned earlier.

ul(x) = —X1X2K13, Mz(x) =

The deformation modes for the above three tests under displacement boundary conditions are shown in
Fig. 2. Note that in the last test (bending test) the coordinate system’s origin is chosen at the lower left
corner.

3.2. Displacement-periodic conditions

The energies U! and Ut are given by Egs. (5) and (6), respectively. Here we choose to apply the
displacement boundary conditions on the two horizontal boundaries of the rhombus 0By, and the periodic
boundary condltlons on the remaining slanted boundaries 0B, = 0B — 0B;.

To determine C 1 wWe conduct two tests:

(1) Uniaxial extension: If we apply y,,, the periodic boundary conditions are given by

u(x+ Ley) = ui(x), t(x+Ley) = —t;(x) Vx € 0B, (10)
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Deformed shapes. Displacement boundary conditions
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and the displacement boundary conditions are given by Eq. (7) on 0By; e; is the unit vector along x,. Thus,
the controlled uniaxial extension y,, = 1 yields C;lz)zz =20/, Of course, alternately, we could apply 7,
so that the periodic boundary conditions on slanted faces would take the form u;(x + Le;) = u;(x) + y,,Le;
and #(x + Le;) = —1;(x), while the displacement boundary conditions on horizontal faces would be
uy(x) = p;x and uy(x) = 0.

(1) Simple shear: The periodic boundary conditions are given by

u;(x + Ley) = u;(x), ti(x + Ley) = —t:(x), Vx € 0B, (11)
and the displacement boundary conditions by
ui(x) =ypx2, u(x)=0 Vxe€0By. (12)

This yields C}}, = 2U!/) (when we set 7,, = 1).
To determine Cl;, we conduct:
(iii) Bending test:
The periodic boundary conditions are given by

ul(x +Le1) = lll(X) _x1x2K13‘aBp

2
uz(x +Le1) = LQ(X) =+ %KB Vx S GBp, (13)
0B,

ti(x + Ley) = —t;(x)

while the displacement conditions on 0Bq = 0B — 0B, are given by Eq. (9). Again, noting that
Y = f,, u dV /v = f ulnldS/V = —hks, if we take the origin of the coordinate system at the corner, this
yields C 53)13 =20/ — p2C\}), in the same fashion as before.

The deformation modes for the above three tests under displacement-periodic boundary conditions are
shown in Fig. 3, with the origin of the coordinate systern belng chosen at the rhombus’ left corner.

In Ostoja- Starzewskl et al. (1999), we computed the C w tensor under purely periodic boundary condi-
tions, but the C'%/ 43 tensor under displacement-periodic boundary conditions. The use of periodic boundary
conditions applied to all surfaces for the evaluation of C ;4 1s natural for a periodic mlcrostructure con-
sidered and gives exact effective moduli. However, the test for the evaluation of C3k3, which involves
bending, does not give a deformation which is periodic on horizontal faces of a rhombus-shaped unit cell.
Thus, we could not use periodic boundary conditions on all surfaces, and have used displacement-periodic
boundary conditions for bending test instead. For con51stency, in the present computation we use the same
boundary conditions (displacement-periodic) for both C i and c? sis- In addition, we use displacement (as
described already) and traction conditions which bound perlodlc and displacement-periodic results.

3.3. Traction conditions

The total complementary energy stored in the unit cell is

1
U*cell :5 / JijSijanmndVa (14)
14

while that of an approximating couple-stress continuum involves, in general, two terms

V
[y*eouple=stress _ 3 [‘C,—,Si(jl,,)m‘fmn + /153S,-(32/33/1/(3 . (15)
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Deformed shapes. Displacement-Periodic boundary conditions
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Fig. 3. Tests for the determination of constants Célz)zz, Cflz)u, and Cﬁ)w under displacement—periodic boundary conditions given by Eqs.
(10), (11) and (13). Left (right) column corresponds to the inclusion at the corner (center).
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To determine Sl.(jlk), we conduct two tests:

(1) Uniaxial tension
tl(x) = T1111, tz(x) =0 Vxe aB, (16)

which yields Sml =20 /V (when we set t;; = 1). Application of the 15, loading (to get Sg)zz) is unwieldy
because of the unbalanced moment imposed by this loading.
(1) Simple shear traction

4 (x) = Tphy, lz(X) = T12M Vx e 637 (17)

which yields S}, = 20" /I (when we set 7, = 1).
Finally, we conduct
(i) Bending test

th(x) =onun =cxon, H(x)=0  Vxe0B, (18)

where ¢ = Mg /I (Mp being the bending moment and / = 2bA* /3 the moment of inertia); Eq. (18) yields SS)B.
In this computation, we assumed the origin of the coordinate system at the cell’s center, so that
S, =20l /Y, whereby Ul = yreoule=suess — O3y /0 with gy = My/area (area = Lby/3/2).
Note that, in this case, the average couple-stress in the couple—stress medium t;; = 0. However, for other
choices of coordinate system’s origin, tj; =+ [, o11dV =+ [, o1inx; dS will, in general, not vanish.

Deformation modes for these tests under traction boundary conditions are shown in Fig. 4. As men-
tioned above, in the bending test under traction boundary conditions, the coordinate system is chosen at the
center of a unit cell.

4. Couple-stress moduli: results and discussion

As pointed out in Section 2, by varying the stiffness ratio £'/E™ we can model a very wide spectrum of
composite materials with either stiff or soft inclusions. Moreover, in the extreme cases of this ratio tending
to very high or low numbers, we approach composites with rigid inclusions or pores, respectively; the actual
values of oo or 0 cannot be set in our computational mechanics model. In the latter case, by raising the
volume fraction of inclusions, we could arrive at the situation of cellular solids, which are essentially beam-
network systems, Fig. 1(b). On the other hand, the case of inclusions of finite stiffness in a near-zero stiffness
matrix would approach the setting of granular media, Fig 1(c).

The choice of unit cells required to determine the couple-stress moduli is as follows: (i) for beam networks
and systems with soft inclusions, the cell is centered at the beam connection nodes; (ii) for granular-type
media, with soft matrix material, the unit cell is centered at the grain center. This leads to a rule of placement
of unit cells in two-phase composite materials: the unit cell should be centered in a stiffer phase. As the stiffness
ratio of two phases tends to 1, the unit cell’s placement has an ever smaller effect, until in the physically
singular case of no mismatch, it becomes immaterial. This special case is of no interest to us as here the
material is homogeneous with no microstructure, and thus, is described by the classical elasticity theory.
Summarizing, when the contrast is 1 — i.e., when both phases are identical — one should use an RVE at the
scale much smaller than what we show in our Figs. 1-4. This new scale should be defined by the presence of
another microscale — crystal lattice or molecular, — and may also be Cosserat-type (e.g., Askar, 1986).

The complete computational mechanics procedure runs as follows:

1. For a given type of boundary conditions, the rhombus-shaped periodic unit cells of Fig. 1(b) and (c) are
analyzed using the finite element software ABAQUSs (1995), see Figs. 2-4.
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Deformed shapes. Traction boundary conditions
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2. Note that the equality Ci?zz = Cill)“ - ZC(;)IZ, valid for isotropic media, which is only approximately sat-
isfied for our case (within 3%), yields Cﬂn directly. The same holds for compliances in case of the trac-

tion boundary condition.
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3. If the displacement or displacement-periodic conditions are being employed, compute, by inversion, the
compliance components Sﬁ)mSS)m and S%)B.
4. Compute / from Eq. (3).
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In Figs. 5-7, we present Cill)“ = Cg)zz, Ci?lz, and C%)B, respectively, obtained from each of three
boundary conditions. They are plotted as functions of the stiffness ratio £'/E™, ranging from 10~ to 10* for
the matrix Poisson’s ratio v = 0.3 and the inclusion Poisson’s ratio v\ = 0.3, and are non-dimensionalized
by E™. Note that the results of displacement-periodic boundary conditions always fall between those ob-
tained by applying displacement and traction boundary conditions. Given the fact that y,; is symmetric, we
can readily adapt the order relations formulated for apparent response tensors in classical elasticity
(Hazanov and Huet, 1994)

)(d

(1
yleljk] Y yl/cl(jkl Y yl/cljkl )yk[ vyija Vit 7é 0. (19)

Here, the superscripts denote three types of boundary conditions: dd-displacement, dp-displacement pe-
riodic, tt-traction. These give

Cﬁ)l(ltt) < C( )(dp) < C(l)(dd) (203)
1

Ci2)1(2 ) g C1212 g C1212 (ZOb)
(1)(tt (1)( 1)(dp) 1)(d 1)(dd) 1)(dd)

ciii? — ¢ < ol — 5P < e - 5. (20c)

The last of these results is obtained under y,, = y,,, which makes it a most stringent condition; also, this
presupposes the isotropy.

Next, we can adapt the same methodology as that leading to Eq. (19) to prove that the response tensors
linking the curvature tensor with the couple—stress tensor follow the fully analogous order relations

K13C3k3 Ki3 < K13C3k3 Kiz < Ki3 C,3k3 Kz VKa, ki # 0, (21)
which implies
Chs” < CRA™ <Rl (22)

All these inequalities are satisfied; Egs. (20a), (20b) and (22) are given in Table 1, while Eq. (20c) can easily
be obtained from these data.
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Fig. 8. The characteristic length /, non-dimensionalized by the unit cell size L, as a function of the stiffness ratio £'/E™ (mismatch),
computed from the results of Figs. 5-7. Cases of three boundary conditions are shown.

It is interesting to note that we also find, by our computational mechanics study, the characteristic length
[ to exhibit this hierarchy (Fig. 8)

A < J(dp) < Jdd) (23)

However, we do not have a mathematical proof of Eq. (23). The three plots in Fig. 8 show the characteristic
lengths /, resulting from our three types of boundary conditions tt, dp, and dd — all non-dimensionalized by
the window size L (=10 in our numerical study). While the right limit of £'/E™ approximates the situation
of rigid grains in the elastic matrix, the left limit approaches that of holes in the elastic matrix (porous
material).

With respect to the latter case, we recall that the analytical, micropolar model of triangular beam net-
works (Wozniak, 1970) gives

2

lanalytical — £ 1 + 3(%) . (24)
24 14 (%)

This yields =0.21 for beams of the width-to-length (w/L) ratio 1:4 or lower (i.e., from stubby to very

slender). The optional correction owing to the Timoshenko, rather than Euler—Bernoulli, beam formulation

is negligible. According to Fig. 8, the value 0.21 is clearly bounded (!), respectively, from above and below,

by the results of tests conducted under displacement and traction boundary conditions, i.e.

)  panalytical  j(dd). (25)

Inequality (25) shows that the /s we obtained from traction and displacement boundary conditions of the
couple-stress theory bound /2"btcal resulting from the more correct (and better posed) micropolar theory
(Eringen, 1999). Moreover, we note that the displacement-periodic boundary conditions do consistently
give [analytical - j(dp) < J(dd) for the entire range of E'/E™.
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It is important to note two more things here:

(a) The characteristic length / is on the same order for the entire range of E'/E™; in Ostoja-Starzewski
et al. (1999), it was also found to be the case for three different volume fractions; it changes most dra-
matically for £'/E™ ranging from 102 to 10°.

(b) As already mentioned earlier in this paper, the particular case of E'/E™ being exactly unity corre-
sponds to a physically singular situation of a homogeneous medium of the Cauchy type — the same as that
of which both classical elastic phases are being made — for which no Cosserat approximation is necessary.

Table 1

), (or Célz)n), Cf]z)lz, and C](?H, non-dimensionalized by £™, and the corresponding characteristic lengths /, non-dimensionalized by L,
obtained by four different boundary conditions: displacement (dd), displacement-periodic (dp), periodic (pp), and traction (tt) for
E'/E™ ranging from 10~* to 10* and v = 0.3 for volume fraction 18.4% (isotropic cell 10*8.66 (E™ = 1))*

dd dp tt pp
C_ill)n or Célz)zz
E'/E™=0.0001 0.7284 0.6641 0.0008 0.6627
EYE™=0.001 0.7291 0.6650 0.0083 0.6636
E'/E™=0.01 0.7359 0.6734 0.0774 0.6721
E/E™=0.1 0.7968 0.7483 0.4747 0.7474
EE™ =10 1.442 1.440 1.386 1.409
EYE™ =100 1.513 1.510 1.428 1.467
E'/E™ =1000 1.521 1.517 1.436 1.473
E'/E™ = 10000 1.521 1.518 1.436 1.474
Chaio
E'/E™=0.0001 0.2722 0.2534 0.0004 0.2273
E'/E™=0.001 0.2724 0.2537 0.0035 0.2276
EYE™=0.01 0.2744 0.2560 0.0320 0.2306
E/E™=0.1 0.2914 0.2773 0.1767 0.2586
EVE™=10 0.5062 0.4924 0.4733 0.4911
E'/E™ =100 0.5316 0.5121 0.4864 0.5107
E/E™ = 1000 0.5345 0.5142 0.4877 0.5128
E'/E™ = 10000 0.5348 0.5145 0.4878 0.5129
C_g)m dp
E'/E™=0.0001 7.118 5.886 0.0024 5.886
EYE™=0.001 7.124 5.897 0.0244 5.897
E'/E™=0.01 7.190 5.994 0.2341 5.994
E/E™=0.1 7.820 6.866 1.743 6.866
E/E™ =10 13.47 13.32 6.653 13.32
EYE™ =100 13.82 13.71 6.771 13.71
E'/E™ =1000 13.87 13.76 6.786 13.76
E'/E™ = 10000 13.87 13.76 6.786 13.76
Characteristic length

pp and dp

E'/E™=0.0001 0.2557 0.2410 0.1314 0.2544
E'/E™=0.001 0.2557 0.2407 0.1318 0.2545
E'/E™=0.01 0.2560 0.2415 0.1352 0.2549
EYE™=0.1 0.2590 0.2486 0.1570 0.2576
E/E™ =10 0.2579 0.2559 0.1875 0.2604
E/E™ =100 0.2550 0.2531 0.1866 0.2591
E'/E™ =1000 0.2547 0.2527 0.1865 0.2590
E'/E™ =10000 0.2547 0.2527 0.1865 0.2590

*The columns dd and dp give Cg)zz, while tt gives le obtained by inversion of the S,v(jlk), tensor.
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Finally, the calculated data for the three stiffness constants le (or C;lz)zz), Cl(;)lz, and C,%)B, and the
corresponding characteristic lengths / are also given in Table 1. Here, we include the results calculated by
displacement (dd), displacement-periodic (dp) and traction (tt) boundary conditions, obtained in this paper
and shown in Figs. 5-8, and include for comparison, in the last column, those for Cfll)ll and cg)u calculated
from periodic boundary conditions (pp), reported in Ostoja-Starzewski et al. (1999). Note that the stiff-
nesses obtained by periodic boundary conditions are also bounded by those calculated by using dis-
placement and traction boundary conditions. The data given in the last column corrects an error which we
found in our earlier paper (Ostoja-Starzewski et al., 1999). Namely, a factor 1/2 was accidentally omitted
there in the energy expression in calculation of c}?l 5; this resulted in a reported characteristic length smaller
by a factor of v/2. Note that the characteristic length obtained by using periodic/displacement-periodic (pp
and dp) boundary conditions is not bounded anymore by the displacement boundary conditions.
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