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Abstract

The study reported in this paper concerns the determination of couple±stress moduli and characteristic lengths of

heterogeneous materials. The study is set in the context of a planar (two-dimensional), two-phase composite with linear

non-couple±stress (classical), elastic constituents, with a single microstructural length scale (inclusion spacing) in an

equilateral triangular array. We use an approach which allows a replacement of this composite by an approximating

couple±stress continuum. We determine the e�ective material parameters from the response of a unit cell under either

displacement, displacement-periodic, or traction boundary conditions. We carry out computations of all the moduli by

varying the sti�ness ratio of both phases, so as to cover a range of very di�erent materials from porous solids through

composites with rigid inclusions. It is found that the three boundary conditions result in hierarchies of couple±stress

moduli. In addition, we observe from our numerical computations that these three boundary conditions also result in a

hierarchy of characteristic lengths. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Classical continuum theories show discrepancies with experiments when a material microstructure gives
rise to sharp gradients of dependent ®elds. Cosserat-type (or microcontinuum-type) theories, dating back to
the Cosserat brothers (Cosserat, 1909), attempt to account for these phenomena. Although a number of
theoretical results have been obtained, the full utility of Cosserat-type theories hinges on one's ability to
determine the constitutive coe�cients. Indeed, some progress in that direction has been made over the past
three decades, but the situation is still one of theoreticians being well ahead of the experimentally available
results (e.g., Nowacki, 1986a,b). The work we report here aims at remedying the situation through mi-
cromechanical analysis rather than the experiment.
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It appears that, in general, the issue of determination of micropolar coe�cients has been addressed in
four types of problems: (a) crystal lattice systems (Askar, 1986); (b) regular beam networks (Wo�zniak, 1970;
Bazant and Christensen, 1972); (c) laminated composites (Herrmann and Achenbach, 1968); and (d) gran-
ular media and foams (Perkins and Thomson, 1973; Lakes, 1983, 1986, 1995, and Yang and Lakes, 1982).
All these systems have one feature in common: they exhibit some de®nite microstructure, which, as is well
known, forms the motivation of all the investigations of Cosserat-type models and theories.

Thus, works in the ®rst and second categories start out with a very clearly set periodic system of particles
interacting via forces and moments modeled by either interatomic potentials or beams. Laminated com-
posites o�er quite a similar advantage thanks to their clearly de®ned geometry. The situation with foams
and granular media is more di�cult due to a spatially disordered geometry of those materials, and
therefore, they have principally been studied through experiments.

In a recent study, Forest and Sab (1998) proposed a methodology for the derivation of an e�ective,
homogeneous Cosserat-type continuum for a heterogeneous Cauchy-type continuum. Their approach is an
extension of the classical homogenization method (Sanchez-Palencia and Zaoui, 1987) ± it hinges on a
representation of the macroscopic displacement ®eld by a polynomial main ®eld and a periodic pertur-
bation. More speci®cally, they show three levels of the polynomial expansion: (i) the linear one leads to a
classical Cauchy-type continuum, (ii) the quadratic one leads to a couple±stress continuum, also called
a restricted model by Nowacki (1986a,b), and (iii) the third-order one (respectively, fourth order in three
dimensions) leads to an unrestricted Cosserat-type (micropolar) continuum. Using a ®nite element method,
Forest and Sab also demonstrate the de®nite advantage of replacing the actual Cauchy-type microstructure
by the Cosserat-type continuum: a much smaller number of degrees of freedom is required in the ho-
mogenized model.

Model of type (ii) has recently been pursued by Ostoja-Starzewski et al. (1999). We carried out that study
in the context of a planar, periodic, e�ectively isotropic, two-phase composite with linear elastic constit-
uents of classical Cauchy type, with a microstructural length scale given by the inclusion spacing. We
subjected the unit cell to periodic boundary conditions. In the limit of very low sti�ness of the inclusion
phase we have obtained moduli that showed very good agreement with analytical derivations of beam-
framework models (Wo�zniak, 1970). Of additional interest to us was the determination of the somewhat
enigmatic characteristic length l ± a parameter apparently ®rst introduced in the analytical studies in the
sixties, when it showed up in the elastostatic ®eld equations. While in the past, l was postulated to be equal
to the average cell or grain size, with all the moduli in hand we could now easily compute l, and, in fact,
found it to be a fraction of the microstructural cell size ± from about one tenth to fourth of it ± for
composites of the type described at the beginning of this paragraph at volume fractions from 3.6±58%.

In this paper, we continue this initial study by considering couple±stress moduli and characteristic
lengths of the above described composite under several additional types of boundary conditions: dis-
placement, displacement-periodic, and traction boundary conditions. We then ®nd that these boundary
conditions result in hierarchies of couple±stress moduli. The motivation of this paper lies in the fact that we
cannot apply periodic boundary conditions in one of the tests (the bending test). Thus, we use an alternate
approach involving displacement and traction boundary conditions to obtain bounds on couple±stress
moduli and compare those with periodic and displacement-periodic boundary condition results. This in-
vestigation complements our other studies of boundary condition e�ects on elastic moduli of composites,
e.g. Jiang et al. (2000).

2. Problem formulation

The leitmotif of this paper is to replace a complex microstructure by a higher-order (i.e., Cosserat)
continuum. Once done, this allows one to work with a homogeneous material model, endowed with yet an
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extra degree of freedom ± that of rotation. In this paper, we address the issue of e�ective couple±stress
moduli in the context of linear elastic microstructures with a single microstructural length scale such as the
mean inclusion spacing. In particular, we remove the aspect of geometric disorder by focusing on a periodic
composite material with an equilateral, triangular arrangement of circular inclusions. This geometry gives
us a composite material which is e�ectively isotropic. We take the periodic unit cell as a rhombus-shaped
domain of edge length L and volume V � bL2

���
3
p

=2 (Fig. 1). The rhombus' height in the x2 direction is
H � 2h � L

���
3
p

=2, and its thickness in the x3 is b.
The inclusion (i) and matrix (m) phases follow classical (linear elastic, isotropic) elasticity; they have

Young's moduli Ei and Em, and Poisson's ratios mi and mm, respectively. By varying the sti�ness ratio Ei=Em

we can model a wide range of materials with either sti� or soft inclusions, and in the extreme cases of this
ratio tending to either 1 or 0, we approach composites with rigid inclusions or pores. It is important to
note, however, that the special case of no mismatch �Ei=Em � 1� implies no microstructure, so the couple
stress model becomes unnecessary in that case.

We focus here on the ®rst planar problem of Cosserat elasticity (Nowacki, 1986a,b) with displacement
u � �u1; u2; 0� and rotation u � �0; 0;u3�; this is a generalization of the classical in-plane elasticity, and
consider a couple±stress (or, restricted continuum) model, in which rotation depends on displacement
gradients in the same manner as in classical elasticity. The kinematics of the body is described by u1; u2, and
u3 � �u2;1 ÿ u1;2�=2 , which de®ne the strain tensor cij and the (bending) curvature tensor ji3; i; j � 1; 2. The
force ®eld is speci®ed by force-stress tensor sij and couple±stress tensor li3; i; j � 1; 2.

The composite of Fig. 1 is centrosymmetric: there is no coupling between sij and ji3 on the one hand and
between cij and li3 on the other. Thus, the constitutive law will involve two sti�ness tensors C�1�ijkl and C�2�i3k3

only, which are de®ned via

sij � C�1�ijklckl; li3 � C�2�i3k3jk3; i; j; k; l � 1; 2: �1�

Equivalently, we can work with their inverses: compliances S�1�ijkl and S�2�i3k3. In the isotropic case, the latter is

Fig. 1. (a) A periodic, globally isotropic, matrix-inclusion composite, of period L, with inclusions of diameter d; (b) a periodic unit cell

with inclusions at the corner; and (c) a periodic unit cell with an inclusion at the center.
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S�1�ijkl � 1
4
�S�dikdjl � dildjk� � �Aÿ S�dijdkl�; S�2�i3k3 � dikM ; �2�

where A;M and S are three independent planar couple±stress constants de®ned in Ostoja-Starzewski and
Jasiuk (1995).

Note that A and S are the area bulk compliance and shear compliance, respectively, and they are the
same as in classical plane elasticity. M is the additional independent constant, which has a dimension
di�ering from A and S by length squared. This gives rise to a length scale present in the couple±stress theory
(a special case of the Cosserat theory), which is absent in the classical elasticity theory. This length is
quantitatively grasped by a characteristic length l de®ned as

l �
�������
S

4M

r
�

���������
S�1�1212

S�2�1313

vuut : �3�

In this paper, we obtain the e�ective response of composites by employing the couple±stress theory,

which therefore gives the second constitutive tensor C�2�i3k3 (in addition to C�1�ijkl present in classical theory),
which captures the information on the microstructure. This information is not captured by classical mi-
cromechanics approaches for predictions of e�ective elastic moduli of heterogeneous materials.

Note that the unit cell's response under non-periodic boundary conditions is anisotropic, but the de-
parture from isotropy is on the order of only a few percent for the composite systems with inclusion volume
fraction of 18% studied in this paper. This makes an approximate comparison of sti�ness tensors (both C�1�ijkl

and C�2�i3k3) found from non-periodic boundary conditions (this paper) with those from periodic ones (pre-
vious paper) possible. Additionally, this allows a discussion of all the results in the context of an isotropic
material model.

3. Boundary conditions on the unit cell

The main goal of our analysis is the determination of e�ective constitutive coe�cients from the unit cell
response of a two-phase composite described in Section 2. We consider three types of boundary conditions
for determination of the e�ective couple±stress moduli for a material domain B having boundary oB (Fig.1):
(i) displacement, (ii) displacement-periodic, and (iii) traction controlled. In each case we compute, by a
®nite element method, the total elastic strain energy stored in the unit cell of the two-phase composite
U cell�� U �cell� as a functional of Cauchy strains eij (respectively, Cauchy stresses rij). Separately, for the ®rst
two boundary conditions, we set up the energy U coupleÿstress corresponding to an e�ective, homogeneous
couple±stress continuum, which is a functional of the strains cij and the curvatures ji3. By setting

U coupleÿstress � U cell; �4a�
we infer the e�ective sti�ness tensors C�1�ijkl and C�2�i3k3. On the other hand, in the case of traction boundary
conditions, we work with the complementary energy U �coupleÿstress ± a functional of sij and li3 ± and, from

U �coupleÿstress � U �cell; �4b�
we obtain the e�ective compliance tensors S�1�ijkl and S�2�i3k3.

3.1. Displacement boundary conditions

The total elastic strain energy stored in the unit cell is

U cell � 1

2

Z
V

eijCijklekl dV ; �5�
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while that of an approximating couple±stress continuum involves, in general, two terms

U coupleÿstress � V
2

cijC
�1�
ijklckl

h
� ji3C�2�i3k3jk3

i
; �6�

where cij in Eq. (6) stands for the e�ective strain of the unit cell in the couple±stress continuum and ji3 is the
e�ective curvature; V is the volume of the unit cell B de®ned in Section 2.

To determine C�1�ijkl we conduct two tests:

(i) Uniaxial extension
If we apply c22, the displacement boundary conditions become

u1�x� � 0; u2�x� � c22x2 8x 2 oB; �7�
which yields C�1�2222 � 2U cell=V when we set c22 � 1; alternately, we could apply u1�x� � c11x1 and u2�x� � 0,
which would yield C�1�1111. For our composite, C�1�1111 is approximately (within 5%) equal to C�1�2222 for all the
sti�ness mismatches considered.

(ii) Simple shear

u1�x� � c12x2; u2�x� � 0; 8x 2 oB; �8�
which yields C�1�1212 � 2U cell=V when we set c12 � 1. There are two more possibilities here: either apply
u1�x� � 0 and u2�x� � c12x1, or u1�x� � c12x2=2 and u2�x� � c12x1=2.

Finally, to determine C�2�i3k3, we conduct
(iii) Bending test

u1�x� � ÿx1x2j13; u2�x� � x2
1

2
j13 8x 2 oB: �9�

We note that, for a bending test, cij in Eq. (6) may be zero or non-zero, depending on the coordinate system
chosen. For the above bending test, the only possible non-zero strain component is c11 �

R
V u1;1 dV =V �R

oB u1n1 dS=V . When we take the origin of coordinates at the rhombus corner, Eq. (9) yields the average
strain in the couple±stress medium c11 � ÿhj13, which results in C�2�1313 � 2U cell=V ÿ h2C�1�1111, whereby (recall
Eq. (4a)) U cell � U coupleÿstress � V �c11C�1�1111c11 � j13C�2�1313j13�=2. When the origin of the coordinate system is at
the cell's center, then c11 � 0, and thus the term involving C�1�1111 in the latter expression vanishes. Also, here,
there exists another possibility for carrying the bending test: u1�x� � x2

2j23=2 and u2�x� � ÿx1x2j23. This test
would yield C�2�2323, which, for our study, is only approximately equal to C�2�1313, given the anisotropy issue
mentioned earlier.

The deformation modes for the above three tests under displacement boundary conditions are shown in
Fig. 2. Note that in the last test (bending test) the coordinate system's origin is chosen at the lower left
corner.

3.2. Displacement-periodic conditions

The energies U cell and U couple±stress are given by Eqs. (5) and (6), respectively. Here we choose to apply the
displacement boundary conditions on the two horizontal boundaries of the rhombus oBd, and the periodic
boundary conditions on the remaining slanted boundaries oBp � oBÿ oBd.

To determine C�1�ijkl we conduct two tests:

(i) Uniaxial extension: If we apply c22, the periodic boundary conditions are given by

ui�x� Le1� � ui�x�; ti�x� Le1� � ÿti�x� 8x 2 oBp; �10�
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Fig. 2. Tests for the determination of couple±stress constants C�1�2222, C�1�1212, and C�2�1313 under displacement boundary conditions. Left

(right) column corresponds to the inclusion at the corner (center).
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and the displacement boundary conditions are given by Eq. (7) on oBd; e1 is the unit vector along x1. Thus,
the controlled uniaxial extension c22 � 1 yields C�1�2222 � 2U cell=V . Of course, alternately, we could apply c11

so that the periodic boundary conditions on slanted faces would take the form ui�x� Le1� � ui�x� � c11Le1

and ti�x� Le1� � ÿti�x�, while the displacement boundary conditions on horizontal faces would be
u1�x� � c11x1 and u2�x� � 0.

(ii) Simple shear: The periodic boundary conditions are given by

ui�x� Le1� � ui�x�; ti�x� Le1� � ÿti�x�; 8x 2 oBp �11�

and the displacement boundary conditions by

u1�x� � c12x2; u2�x� � 0 8x 2 oBd: �12�
This yields C�1�1212 � 2U cell=V (when we set c12 � 1).

To determine C�2�i3k3, we conduct:
(iii) Bending test:
The periodic boundary conditions are given by

u1�x� Le1� � u1�x� ÿ x1x2j13joBp

u2�x� Le1� � u2�x� � x2
1

2
j13

����
oBp

8x 2 oBp;

ti�x� Le1� � ÿti�x�

�13�

while the displacement conditions on oBd � oBÿ oBp are given by Eq. (9). Again, noting that
c11 �

R
V u1;1 dV =V � RoB u1n1dS=V � ÿhj13, if we take the origin of the coordinate system at the corner, this

yields C�2�1313 � 2U cell=V ÿ h2C�1�1111 in the same fashion as before.

The deformation modes for the above three tests under displacement-periodic boundary conditions are
shown in Fig. 3, with the origin of the coordinate system being chosen at the rhombus' left corner.

In Ostoja-Starzewski et al. (1999), we computed the C�1�ijkl tensor under purely periodic boundary condi-
tions, but the C�2�i3k3 tensor under displacement-periodic boundary conditions. The use of periodic boundary
conditions applied to all surfaces for the evaluation of C�1�ijkl is natural for a periodic microstructure con-
sidered and gives exact e�ective moduli. However, the test for the evaluation of C�2�i3k3, which involves
bending, does not give a deformation which is periodic on horizontal faces of a rhombus-shaped unit cell.
Thus, we could not use periodic boundary conditions on all surfaces, and have used displacement-periodic
boundary conditions for bending test instead. For consistency, in the present computation we use the same
boundary conditions (displacement-periodic) for both C�1�ijkl and C�2�i3k3. In addition, we use displacement (as
described already) and traction conditions which bound periodic and displacement-periodic results.

3.3. Traction conditions

The total complementary energy stored in the unit cell is

U �cell � 1

2

Z
V

rijSijmnrmn dV ; �14�

while that of an approximating couple±stress continuum involves, in general, two terms

U �coupleÿstress � V
2

sijS
�1�
ijmnsmn

h
� li3S�2�i3k3lk3

i
: �15�
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Fig. 3. Tests for the determination of constants C�1�2222, C�1�1212, and C�2�1313 under displacement±periodic boundary conditions given by Eqs.

(10), (11) and (13). Left (right) column corresponds to the inclusion at the corner (center).
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To determine S�1�ijkl we conduct two tests:

(i) Uniaxial tension

t1�x� � s11n1; t2�x� � 0 8x 2 oB; �16�
which yields S�1�1111 � 2U �cell=V (when we set s11 � 1). Application of the s22 loading (to get S�1�2222) is unwieldy
because of the unbalanced moment imposed by this loading.

(ii) Simple shear traction

t1�x� � s12n2; t2�x� � s12n1 8x 2 oB; �17�
which yields S�1�1212 � 2U �cell=V (when we set s12 � 1).

Finally, we conduct
(iii) Bending test

t1�x� � r11n1 � cx2n1; t2�x� � 0 8x 2 oB; �18�
where c � MB=I (MB being the bending moment and I � 2bh3=3 the moment of inertia); Eq. (18) yields S�2�1313.
In this computation, we assumed the origin of the coordinate system at the cell's center, so that
S�2�1313 � 2U �cell=V , whereby U �cell � U �coupleÿstress � V l13S�2�1313l13=2 with l13 � MB=area �area � Lb

���
3
p

=2�.
Note that, in this case, the average couple±stress in the couple±stress medium s11 � 0. However, for other
choices of coordinate system's origin, s11 � 1

V

R
V r11 dV � 1

V

R
oB r11n1x1 dS will, in general, not vanish.

Deformation modes for these tests under traction boundary conditions are shown in Fig. 4. As men-
tioned above, in the bending test under traction boundary conditions, the coordinate system is chosen at the
center of a unit cell.

4. Couple±stress moduli: results and discussion

As pointed out in Section 2, by varying the sti�ness ratio Ei=Em we can model a very wide spectrum of
composite materials with either sti� or soft inclusions. Moreover, in the extreme cases of this ratio tending
to very high or low numbers, we approach composites with rigid inclusions or pores, respectively; the actual
values of 1 or 0 cannot be set in our computational mechanics model. In the latter case, by raising the
volume fraction of inclusions, we could arrive at the situation of cellular solids, which are essentially beam-
network systems, Fig. 1(b). On the other hand, the case of inclusions of ®nite sti�ness in a near-zero sti�ness
matrix would approach the setting of granular media, Fig 1(c).

The choice of unit cells required to determine the couple±stress moduli is as follows: (i) for beam networks
and systems with soft inclusions, the cell is centered at the beam connection nodes; (ii) for granular-type
media, with soft matrix material, the unit cell is centered at the grain center. This leads to a rule of placement
of unit cells in two-phase composite materials: the unit cell should be centered in a sti�er phase. As the sti�ness
ratio of two phases tends to 1, the unit cell's placement has an ever smaller e�ect, until in the physically
singular case of no mismatch, it becomes immaterial. This special case is of no interest to us as here the
material is homogeneous with no microstructure, and thus, is described by the classical elasticity theory.
Summarizing, when the contrast is 1 ± i.e., when both phases are identical ± one should use an RVE at the
scale much smaller than what we show in our Figs. 1±4. This new scale should be de®ned by the presence of
another microscale ± crystal lattice or molecular, ± and may also be Cosserat-type (e.g., Askar, 1986).

The complete computational mechanics procedure runs as follows:

1. For a given type of boundary conditions, the rhombus-shaped periodic unit cells of Fig. 1(b) and (c) are
analyzed using the ®nite element software ABAQUSABAQUS (1995), see Figs. 2±4.

F. Bouyge et al. / International Journal of Solids and Structures 38 (2001) 1721±1735 1729



2. Note that the equality C�1�1122 � C�1�1111 ÿ 2C�1�1212, valid for isotropic media, which is only approximately sat-
is®ed for our case (within 3%), yields C�1�1122 directly. The same holds for compliances in case of the trac-
tion boundary condition.

Fig. 4. Tests for the determination of constants S�1�1111, S�1�1212, and S�2�1313 under traction boundary conditions. Left (right) column cor-

responds to the inclusion at the corner (center).
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3. If the displacement or displacement-periodic conditions are being employed, compute, by inversion, the
compliance components S�1�1111; S

�1�
1212, and S�2�1313.

4. Compute l from Eq. (3).

Fig. 5. The e�ective moduli C�1�1111 � C�1�2222, non-dimensionalized by Em, from three types of boundary conditions (displacement (dd),

displacement-periodic (dp), and traction (tt)) plotted as functions of the sti�ness ratio Ei=Em (mismatch) for the case of the Poisson's

ratio mm � mi � 0:3 at volume fraction 18.4%.

Fig. 6. The e�ective moduli C�1�1212, non-dimensionalized by Em, from three types of boundary conditions plotted as functions of the

sti�ness ratio Ei=Em (mismatch) for the case of Poisson's ratio mm � mi � 0:3 at volume fraction 18.4%.
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In Figs. 5±7, we present C�1�1111 � C�1�2222;C
�1�
1212, and C�2�1313, respectively, obtained from each of three

boundary conditions. They are plotted as functions of the sti�ness ratio Ei=Em, ranging from 10ÿ4 to 104 for
the matrix Poisson's ratio mm � 0:3 and the inclusion Poisson's ratio mi � 0:3, and are non-dimensionalized
by Em. Note that the results of displacement-periodic boundary conditions always fall between those ob-
tained by applying displacement and traction boundary conditions. Given the fact that cij is symmetric, we
can readily adapt the order relations formulated for apparent response tensors in classical elasticity
(Hazanov and Huet, 1994)

cijC
�1��tt�
ijkl ckl6 cijC

�1��dp�
ijkl ckl6 cijC

�1��dd�
ijkl ckl 8cij; ckl 6� 0: �19�

Here, the superscripts denote three types of boundary conditions: dd-displacement, dp-displacement pe-
riodic, tt-traction. These give

C�1��tt�1111 6C�1��dp�
1111 6C�1��dd�

1111 �20a�
C�1��tt�1212 6C�1��dp�

1212 6C�1��dd�
1212 �20b�

C�1��tt�1111 ÿ C�1��tt�1212 6C�1��dp�
1111 ÿ C�1��dp�

1212 6C�1��dd�
1111 ÿ C�1��dd�

1212 : �20c�
The last of these results is obtained under c11 � c22, which makes it a most stringent condition; also, this
presupposes the isotropy.

Next, we can adapt the same methodology as that leading to Eq. (19) to prove that the response tensors
linking the curvature tensor with the couple±stress tensor follow the fully analogous order relations

ji3C�2��tt�i3k3 jk36 ji3C�2��dp�
i3k3 jk36 ji3C�2��dd�

i3k3 jk3 8ji3; jk3 6� 0; �21�
which implies

C�2��tt�i3k3 6C�2��dp�
i3k3 6C�2��dd�

i3k3 : �22�
All these inequalities are satis®ed; Eqs. (20a), (20b) and (22) are given in Table 1, while Eq. (20c) can easily
be obtained from these data.

Fig. 7. The e�ective moduli C�2�1313, non-dimensionalized by Em, from three types of boundary conditions plotted as functions of the

sti�ness ratio Ei=Em (mismatch) for the case of Poisson's ratio mm � mi � 0:3 at volume fraction 18.4%.
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It is interesting to note that we also ®nd, by our computational mechanics study, the characteristic length
l to exhibit this hierarchy (Fig. 8)

l�tt�6 l�dp�6 l�dd�: �23�
However, we do not have a mathematical proof of Eq. (23). The three plots in Fig. 8 show the characteristic
lengths l, resulting from our three types of boundary conditions tt, dp, and dd ± all non-dimensionalized by
the window size L (�10 in our numerical study). While the right limit of Ei=Em approximates the situation
of rigid grains in the elastic matrix, the left limit approaches that of holes in the elastic matrix (porous
material).

With respect to the latter case, we recall that the analytical, micropolar model of triangular beam net-
works (Wo�zniak, 1970) gives

lanalytical � L
24

1� 3 w
L

ÿ �2

1� w
L

ÿ � : �24�

This yields �0.21 for beams of the width-to-length �w=L� ratio 1:4 or lower (i.e., from stubby to very
slender). The optional correction owing to the Timoshenko, rather than Euler±Bernoulli, beam formulation
is negligible. According to Fig. 8, the value 0.21 is clearly bounded (!), respectively, from above and below,
by the results of tests conducted under displacement and traction boundary conditions, i.e.

l�tt�6 lanalytical6 l�dd�: �25�

Inequality (25) shows that the l's we obtained from traction and displacement boundary conditions of the
couple±stress theory bound lanalytical resulting from the more correct (and better posed) micropolar theory
(Eringen, 1999). Moreover, we note that the displacement-periodic boundary conditions do consistently
give lanalytical < l�dp� < l�dd� for the entire range of Ei=Em.

Fig. 8. The characteristic length l, non-dimensionalized by the unit cell size L, as a function of the sti�ness ratio Ei=Em (mismatch),

computed from the results of Figs. 5±7. Cases of three boundary conditions are shown.
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It is important to note two more things here:

(a) The characteristic length l is on the same order for the entire range of Ei=Em; in Ostoja-Starzewski
et al. (1999), it was also found to be the case for three di�erent volume fractions; it changes most dra-
matically for Ei=Em ranging from 10ÿ2 to 102.

(b) As already mentioned earlier in this paper, the particular case of Ei=Em being exactly unity corre-
sponds to a physically singular situation of a homogeneous medium of the Cauchy type ± the same as that
of which both classical elastic phases are being made ± for which no Cosserat approximation is necessary.

Table 1

C�1�1111 (or C�1�2222), C�1�1212, and C�2�1313, non-dimensionalized by Em, and the corresponding characteristic lengths l, non-dimensionalized by L,

obtained by four di�erent boundary conditions: displacement (dd), displacement-periodic (dp), periodic (pp), and traction (tt) for

Ei=Em ranging from 10ÿ4 to 104 and m � 0:3 for volume fraction 18.4% (isotropic cell 10*8.66 �Em � 1�)a

dd dp tt pp

C�1�1111 or C�1�2222

Ei/Em� 0.0001 0.7284 0.6641 0.0008 0.6627

Ei/Em� 0.001 0.7291 0.6650 0.0083 0.6636

Ei/Em� 0.01 0.7359 0.6734 0.0774 0.6721

Ei/Em� 0.1 0.7968 0.7483 0.4747 0.7474

Ei/Em� 10 1.442 1.440 1.386 1.409

Ei/Em� 100 1.513 1.510 1.428 1.467

Ei/Em� 1000 1.521 1.517 1.436 1.473

Ei/Em� 10000 1.521 1.518 1.436 1.474

C�1�1212

Ei/Em� 0.0001 0.2722 0.2534 0.0004 0.2273

Ei/Em� 0.001 0.2724 0.2537 0.0035 0.2276

Ei/Em� 0.01 0.2744 0.2560 0.0320 0.2306

Ei/Em� 0.1 0.2914 0.2773 0.1767 0.2586

Ei/Em� 10 0.5062 0.4924 0.4733 0.4911

Ei/Em� 100 0.5316 0.5121 0.4864 0.5107

Ei/Em� 1000 0.5345 0.5142 0.4877 0.5128

Ei/Em� 10000 0.5348 0.5145 0.4878 0.5129

C�2�1313 dp

Ei/Em� 0.0001 7.118 5.886 0.0024 5.886

Ei/Em� 0.001 7.124 5.897 0.0244 5.897

Ei/Em� 0.01 7.190 5.994 0.2341 5.994

Ei/Em� 0.1 7.820 6.866 1.743 6.866

Ei/Em� 10 13.47 13.32 6.653 13.32

Ei/Em� 100 13.82 13.71 6.771 13.71

Ei/Em� 1000 13.87 13.76 6.786 13.76

Ei/Em� 10000 13.87 13.76 6.786 13.76

Characteristic length

pp and dp

Ei/Em� 0.0001 0.2557 0.2410 0.1314 0.2544

Ei/Em� 0.001 0.2557 0.2407 0.1318 0.2545

Ei/Em� 0.01 0.2560 0.2415 0.1352 0.2549

Ei/Em� 0.1 0.2590 0.2486 0.1570 0.2576

Ei/Em� 10 0.2579 0.2559 0.1875 0.2604

Ei/Em� 100 0.2550 0.2531 0.1866 0.2591

Ei/Em� 1000 0.2547 0.2527 0.1865 0.2590

Ei/Em� 10000 0.2547 0.2527 0.1865 0.2590

a The columns dd and dp give C�1�2222, while tt gives C�1�1111 obtained by inversion of the S�1�ijkl tensor.
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Finally, the calculated data for the three sti�ness constants C�1�1111 (or C�1�2222), C�1�1212, and C�2�1313, and the
corresponding characteristic lengths l are also given in Table 1. Here, we include the results calculated by
displacement (dd), displacement-periodic (dp) and traction (tt) boundary conditions, obtained in this paper
and shown in Figs. 5±8, and include for comparison, in the last column, those for C�1�1111 and C�1�1212 calculated
from periodic boundary conditions (pp), reported in Ostoja-Starzewski et al. (1999). Note that the sti�-
nesses obtained by periodic boundary conditions are also bounded by those calculated by using dis-
placement and traction boundary conditions. The data given in the last column corrects an error which we
found in our earlier paper (Ostoja-Starzewski et al., 1999). Namely, a factor 1=2 was accidentally omitted
there in the energy expression in calculation of C�2�1313; this resulted in a reported characteristic length smaller
by a factor of

���
2
p

. Note that the characteristic length obtained by using periodic/displacement-periodic (pp
and dp) boundary conditions is not bounded anymore by the displacement boundary conditions.
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